
Soundworks:
An Object-Oriented
Distributed System
for Digital Sound

Jonathan D. Reichbach and Richard A. Kemmerer

University of California at Santa Barbara

Soundworks lets users
interactively manipulate

sound through a
graphical interface.
The system handles
digitally sampled

sounds as well as those
generated by software

and digital signal
processing hardware.

he field of computer-based music encompasses issues in music composi-
tion, synthesis, manipulation, and performance.' ' Here. we address the
manipulation and synthesis of sounds. Our primary goal in this work was

t o provide standard sound manipulation (or editing) features like splicing, looping,
and mixing. In so doing, we provided operations that could modify the amplitude,
pitch, and duration of sounds. To aid in modifying sounds -and creating new ones
- we predefined sounds representing basic sound-generating waveforms (for
example, sine and triangle) for use with available operations.

Our second goal was to develop a server-based system that could be easily
integrated with other applications and user interfaces, and that could be extended
to support network-based access to sounds and devices. We addressed the large
computational requirements of digital sound manipulation by integrating digital
processing hardware into the system. This integration supports a more interactive
environment for processing sounds and provides the possibility of real-time
response.

Because we wanted t o have a server-based system with network-based access t o
sounds and digital processing hardware, we used Sun Microsystems' NEWS
application programming environmenth for developing the system. NEWS (which
stands for network-extensible window system) provided the necessary primitive
graphic items for a graphical window-based interface and let us use an object-
oriented approach for development.

The resulting system, called Soundworks, is an object-oriented distributed
system for manipulating digital sound. I t lets the user interactively manipulate
these sounds with a graphical window-based interface and handles digital sampled

Figure 1. File sound
windows for a mono
sound (a) and a ste-

:o sound (b). I

sounds, sounds generated by software,
o r sounds generated by digital signal
processing hardware. Soundworks' dis-
tributed nature lets the sounds and dig-
ital hardware reside on a system other
than the user's local system.

After a brief description of related
research that provided the basis for
Soundworks, we introduce the Sound-
Works system and present details about
its design. Then we summarize the re-
sults of the project and discuss some
areas for future research.

Related research

User interface design for sound pro-
cessing has followed the trend for tradi-
tional applications. It progressed from
punch cards and teletypewriter-based Figure 2. File sound window menu.

COMPUTER

terminal interfaces to graphics-based
window interfaces. These developments
paralleled a transition from batch pro-
cessing t o more interactive environ-
ments. Also, with the advent of distrib-
uted systems, sound processing systems
could be distributed to allow multiple
users to share resources such as sound
file systems and digital sound process-
ing hardware.

User interfaces. Two issues impor-
tant in developing a graphical user in-
terface a re consistency between the
graphics model and the objects in the
system, and compatibility with other
graphics applications. A consistent sys-
tem graphics model provides a close tie
between objects and their correspond-
ing graphic representations. For in-
stance. a sound object can be displayed
as a waveform, representing the change
in amplitude over time.

This close tie should also extend to
other objects in the system. For exam-
ple. the graphic representation of a win-
don should be consistent with that win-
dow‘s function, regardless of whether
the window is open or closed. In Sound-
Works we achieved this by using the
same icon in different sizes to represent
all ~ i n d o w s that contain a sound. That
is. a sound window can be either open,
exposing the contents of the window, or
closed. with an icon representing the
contents o f the window. Similarly, the
help window icon is a picture of a text
manual. The main goal is that the graphic
objects. regardless of their state, repre-
sent the objects in the system.

Compatibility with other applications
can be achieved with a graphics win-
dow-mouse package. This package pro-
vides a basic set of graphic objects (win-
dows, menus, buttons, message boxes,
and so on) that can be integrated with
application-specific graphic objects.
Developers can also provide a set of
standard graphic objects representing
sound-related objects. The Hyperscore
ToolKit,’ MacMix,’ and Sound Kit’ are
good examples of packages tailored to-
ward sound applications. These systems
provide a basic set of extensible graphic
objects for displaying sounds, notes,
and other application-specific informa-
tion.

Following this approach, Soundworks
provides a set of graphic objects that
can be used to represent and manipu-
late sounds. These graphic objects are
easily extended and modified to pro-

vide a high-level interface for integrat-
ing audio and graphics.

Distributed sound systems. These re-
cently developed systems provide bet-
ter resource-sharing, reliability, and
performance at lower cost. Some recent
digital sound systems provide shared
access to resources using local area net-
works. For instance. the Etherphone
systemX for network-based voice mes-
sages lets the user edit digital voice rep-
resentations and play or record the re-
sult through special-purpose hardware
at a local workstation. The Vox server.’
in contrast, provides flexible configura-
tions of digital hardware. such as speech
synthesis. speech recognition, and vid-
eodevices, which can be integrated with
the user’s local workstation. These de-
vices can also be shared across the net-
work.

T h e SoundWorks user interface,
which resides on the user’s local system,
is distributed from the application code,
which resides on the remote system
where the sound files and hardware are
located. The local graphic interface code
interacts with the user, and the remote
application code manages the sounds,
implements all operations, and inter-
faces with devices. Currently, Sound-
Works distributes only the user inter-
face to the sound files and hardware.
However, the architecture of Sound-
Works can be extended to let multiple
users access shared sound files and dig-
ital sound hardware throughout the net-
work.

System overview

This section presents the different
types of sounds and window interfaces
provided by SoundWorks and the oper-
ations that modify these sounds.

Sounds and sound windows. Sound-
Works provides two types of sound: sum-
pled andgeneruted. Sampled sounds are
stored on disk as a series of numbers
representing the change in amplitude
over time, while generated sounds are
computed as required by software or
external hardware. Sounds are access-
ed throughfile sound windows and wuve
sound windows. A third type of win-
dow, the linesegment window, is used to
modify other sounds. Line segment win-
dows allow users to define linear func-
tions. A linear function is a software-

generated sound of only one cycle.
In the remainder of this article, we

classify all three windows as sound win-
dows. Each type of window supports a
common set of controls and operations.
Each type also has unique controls and
operations. A n example of a common
operation is setting edit markers that
delimit a section of sound or a line in a
window. In contrast, the save opera-
tion. which saves a sampled sound on
disk, is available only for file sound
windows, even though line segments
could also be saved.

File sound windows are used for ac-
cessing sound files, which are stored on
disk as a series of samples. Figure 1
shows two example file sound windows.
The sounds represented in these win-
dows are identified by name, starting
point, and duration. Figure l a shows a
mono sound, and Figure l b a stereo
sound. Sound files can have different
sample rates and can be any length in
duration. Users can create sounds in a
variety of ways. They can sample sounds
from an external analog audio source,
compute sounds with a direct synthesis
language, or create sounds with a Sound-
Works operation.

Common editing commands, such as
deleting and repeating sections of a
sound and changing its amplitude and
duration. are accessed through the file
sound window menu. The example in
Figure l a has edit marks (vertical lines
perpendicular to the sound) that delim-
it the section of sound starting at time
0.249878 and ending at time 0.641602
seconds. Figure 2 shows the mono file
sound window of Figure l a with the edit
window indicating that the delete oper-
ation will be applied to the left section
of the sound.

Operations on sound files are made
to an internal copy of the sound and do
not affect the original version stored on
disk. The save operation stores a sound
file on disk. Sounds can also be manip-
ulated by using operation windows,
which are described in the next section.

Wave sounds, which are basic sound
units, can be used as building blocks for
creatingnew sounds. Four types of wave
sounds are provided: sine, triangle, saw-
tooth. and square. Before users can ac-
cess these sounds. they must specify the
type of wave, frequency, amplitude, and
duration. In contrast to sound files, wave
sounds are not stored on disk, but are
computed by the system as required. As
a result, wave sounds are not modified

March 1992 27

Figure 3. Wave sound window.

after they are created. Fig-
ure 3 shows an example wave
sound window for a s ine
wave.

A variant of the wave
sound genera tes sound
through digital signal pro-
cessing (DSP) hardware. In-
stead of a wave type, the user
specifies a program execut-
ed by the DSP hardware.
When the user invokes the

Figure 4. Line segment window.

I tenis’ NEWS application pro-
n w g r

0 chooseroueround

gramining environment. Be-
fore describing the high-lev-
cl architecture and the design
of the Soundworks system,
we briefly descr ibe the
NEWS application environ-
nient.

NEWS. S u n Microsys-
tems developed NEWS’

I to provide class structures
program. it generates the Figure 5. Operation window.
sound. For example. a user
can specify a line segment
window as the waveform shape to pro-
duce a wave sound.

Line segment windows are used to
create line segments for manipulating
sounds. For example, line segments may
be used to modify the amplitude and
duration of file or wave sounds. Figure
4 shows an example line segment win-
dow.

Operation windows. In addition to
the editing commands accessed through
the menu of a sound window, the Sound-
Works system provides a set of opera-
tions that uses either a sound or a line
segment to manipulate another sound.
Users access these operations through
separa te windows that guide them
through the operation. asking them to
choose the source, the modifier. and
other necessary information. The oper-
ation windows can be used to splice and
mix sounds as well as to modify the
amplitude and duration of a sound by
another sound. For example. a line seg-
ment can be used as an amplitude enve-
lope to modify a sound. Figure 5 shows
a merge operation window at the start

of the system’s interaction with the user.
Figure 6 shows the input and output

windows for a mix operation. Thc win-
dows in Figures 6a and 6b are wave
sound windows. The left onc is the source
window. and the right is the modifier.
Because wave sounds cannot be niodi-
fied once created. the user must create
a new window to contain the result of
the operation. To do this. the user choos-
es the “new” button in the operation
window (Figure 5). Thc window in Fig-
ure 6c shows the result of mixing the
center section of the source sound with
the wave sound and using the result t o
replace the center section. Currently.
Soundworks supports the use of only
two sounds in operations. The capabil-
ity for supporting any number of these
sounds would be a reasonable exten-
sion.

Soundworks design

T o design and develop Soundworks.
we used an object-oriented version of
PostScript in addition to Sun Microsys-

tha t suppor t a n objec t -
oriented approach for pro-
ducing graphical interfaces.

Through an object-oriented version of
PostScript. NEWS providcs a set of ba-
sic graphic items and an underlying
framework for integrating these itcms
into applic~ition-specific code. That is.
graphic items are defined as a collection
of classes. which can be either intcgrat-
ed into the application as is o r modified
by using inheritance. I n Soundworks
we used predefined graphic items as the
basis for defining a set of classes for all
items in the user interface.

To provide network access to appli-
cations. NEWS supports a client-server
modcl for applications development.
The term c,lient server has an unusual
meaning here. The server is the local
workstation at which the user’s display
device resides (in other words. it’s a
display server). and the client can be the
remote system on which the actual ap-
plication resides. This model allows the
a ppl i c ii t i on t o he partition c d into di s-
tinct parts. which can bc executed on
different systems. The client applica-
tion interchangesrequests with the serv-
er at the user’s display station. In gener-
al, the client application (in Soundworks

‘X (’OMPUTER

Figure 6.
Example mix
operation:
source wave-
sound window
(a), modifier
wave-sound
window (b), and
the results of the
operation (c).

called the sourid kernel) deals with the
actual application. while the server deals
with user interface issues.

To address the performance require-
ments of interactive applications, NEWS
allows application developers to speci-
fy their own high-level network proto-
col to communicate between the appli-
cat ion-specif ic code and t h e user
interface code. The client application
downloads the PostScript user interface
code to the server a t startup. This code
thus resides on the server and commu-
nicates with the client application code
using the network protocol defined by
the application developer.

System architecture. We used an ob-
ject-oriented design approach to devel-
op the high-level architecture for the
Soundworks system. First, we identi-
fied the major components of the sys-
tem and the interactions between them.
Next. we partitioned the components

for distribution across the network. Class
specifications were developed for each
component and successively refined into
subclass specifications to produce the
system implementation.

Soundworks ' major components can
be derived from the system overview
section. They are the windows that rep-
resent sounds, lines, and operations; the
sounds themselves; and operations on
the sounds. These components can be

partitioned into the local user-interface-
specific code, which consists of the win-
dows and other graphic items, and the
remote application-specific code, which
implements the sounds, lines, and oper-
ations.

In Soundworks, the application-spe-
cific code, or client application, imple-
ments a sound kernel and manages
sounds and lines. performs operations
on sounds, and interfaces to digital hard-
ware. The user interface, residing on
the local system, creates and manages
such items as windows. buttons, and
sliders. When the user requests an oper-
ation on a sound, the user interface
communicates with the sound kernel to
perform the operation. This communi-
cation is completely defined by the pro-
tocol between the user interface and the
sound kernel. The protocol is imple-
mented by a user interface module and
a client application module resident on
the server and client systems, respec-
tively. The client application module
receives requests from the user inter-
face module and accesses the sound
kernel through a well-defined interface.
Figure 7 shows a high-level representa-

Client

module

I I I I

User interface

Network protocol

I . I

Sound files 1~
I I hardware

Sound kernel

Figure 7. Soundworks system architecture.

March 1902 29

Flow-of-control example

To demonstrate the roles of the objects and modules in the
system, we present an example of scaling the amplitude of
one sound by a line segment. The example includes the ob-
jects that are created and the methods called to perform the
operation.

First, a FileSoundWindow must be created and a file sound
loaded. To create a FileSoundWindow, the user chooses the
create file sound menu command. The creation of the File-
SoundWindow and the specification of the file sound are per-
formed on the local system. When the user chooses the load
button, the loadsound method first creates a FileSoundView,
which in turn creates a new Sound object, one of the classes
of the user interface module on the local system. The File-
SoundWindow asks the view to load the sound by calling the
loadsound method in the Sound object. The Sound object
sends a IoadFile request to the remote client application. The
client application fields the request, performs file-create to
create the file sound, and returns the result to the sound ob-
ject, which returns to the FileSoundView and finally the File-
SoundWindow.

If the result is positive, the paint method is invoked to dis-
play the file sound in the view. The view invokes the paint
method in the Sound object to initiate the drawing process.
On receiving the paint request, the client application calls the
sound-paint routine in the sound kernel. The sound kernel
draws the sound using the paint-window, ps-moveto, and
ps-lineto routines provided by the client application. These
routines send actual PostScript commands to the user inter-

tion of the system architecture. Subse-
quent sections present the specifications
of the user interface, the network pro-
tocol, and the sound kernel. A n exam-
ple of the flow of control between the
various components of the system ap-
pears in the “Flow-of-control example”
sidebar.

User interface class specifications. The
user interface creates and manages the

face to draw the sound. At this point, the sound is visible and
can be accessed through the Soundview.

The next steps are to create a LineSegmentWindow and to
draw a line segment in it. The LineSegmentWindow is created
using the create line menu command. When the user chooses
the draw button, the draw method in the Linesegmentview is
invoked. The local system handles the drawing of the line
segments completely; there is no interaction with the remote
sound kernel. The load operation in the LineSegmentWindow
invokes the IoadLine method in the Linesegmentview, which
then calls IoadLine in the Sound object. Just as with the file
sound, the sound object interacts with the remote client appli-
cation to create the line and draw it in the LineSegmentView.

At this point, both the file sound and the line segments
have been specified; only the scale operation itself needs to
be performed. The user chooses the scale operation menu
command, which creates a scale operation window. The scale
operation window asks the user to choose the source sound
to be scaled and the sound (in this case, line segment) to use
to scale the sound. This is all done locally without any inter-
action with the sound kernel. When the user hits the “doit”
button, the scaleoperation in the operation object is invoked.
This causes a message to be sent to the remote client appli-
cation. The client application receives the message and calls
the scale-operation routine provided by the sound kernel to
perform the operation. The result of the scale operation is
then returned to the operation object and in turn to the Scale-
OperationWindow.

graphic objects displayed at the user‘s
workstation. We grouped graphic ob-
jects that share common features into
high-level specifications and used these
class specifications to develop subclass
specifications for each object of the same
type. Examples of objects that share
common features are windows, compo-
nents in the windows, and objects used
to represent sounds.

The class specifications for the user

interface form a hierarchy based on the
class inheritance. Figure 8 presents the
inheritance hierarchy for the major class-
es. At the highest level of the hierarchy
are the predefined classes provided by
NEWS, including Object, LiteWindow.
LiteMenu, and LiteItem. We used the
LiteWindow class specification to spec-
ify the four types of windows supported
by Soundworks: control, operation.
help, and sound. Other windows in

I I

ControlWindow OperationWindow

MixOperationWindow

ScaleOperationWindow

StretchODerationWindow

I I
Helpwindow SoundWindow

FileSoundWindow WaveSoundView

Figure 8. Soundworks class hierarchy.

30 COMPUTER

Soundworks are defined as their sub-
classes.

One class can also be a client of an-
other class. For example, a window is a
client of objects like buttons and slid-
ers, and Soundwindows are clients of
other classes, including the Soundview
class, which is used for displaying and
manipulating the different types of
sounds. Figure 9a gives the client hier-
archy for the FileSoundWindow class,
while Figure 9b shows the hierarchy for
the Mergeoperat ionwindow class. The
other classes have similar client hierar-
chies.

Predefined NEWS classes. At the root
of all NEWS classes is the generic class
Object (see Figure 8). It defines two
methods: “new” and “doit.” The new
method, which is called to create an
instance of the class, is required by ev-
ery class. The doit method is used to
create temporary methods for internal
purposes.

NEWS provides a set of subclasses of
the class Object that implement win-
dows, menus, and other common items
(for example, buttons and sliders). In
Soundworks we used these classes both
as superclasses for defining new classes
and for clients. Here, we briefly de-
scribe the classes provided by NEWS.
More details are available in the NEWS
user’s manuaL6

LiteWindow. This class provides a
standard format for displaying and us-
ing windows, and includes a set of con-
trols and menus for manipulating such
window features as size and position.
LiteWindow defines methods for creat-
ing, destroying, moving, and painting
the window. For example, the paint
method is used to paint or draw the
window (and all graphic objects within
it).

LiteMenu. This class provides a stan-
dard set of pull-right menus that can be
associated with a window. A menu is
defined as an array of <entry, value>
pairs. The entry is the title that will
appear in the menu, and the value is
either a method to invoke or another
menu.

Liteltem. This class provides a set of
standard graphic items that can be in-
corporated into other classes. These
items are defined as subclasses of class
LiteItem and include items for entering

I FileSoundWindow I
I

I I 1
Messageltem I I Buttonltem I I FileSou[ndView I I Textltem I I

I I I Sound SoundScroll I I LiteMenu

(4

Mergeoperationwindow
I

I I
Messageltem I I Buttonltem I I Operation

(b)

Figure 9. Soundworks client hierarchy for the FileSoundWindow class (a) and
the Mergeoperationwindow class (b).

text (Textltem), buttons (Buttonltem),
sliders (Sl iderI tem), message a reas
(MessageItem), and choice items (Ar-
rayItem).

Soundwindow class specifications.
This class defines the window used t o
access sound objects. A subclass of
LiteWindow, it inherits the look and
functions of that class. The SoundWin-
dow is used as the superclass for a set of
subclasses for each type of sound. The
Soundwindow class overrides the meth-
ods “new” and “paint,” as defined in
LiteWindow, to include SoundWindow-
specific code and to define sound-relat-
ed methods common t o all types of
sounds. T h e methods loadsound, close-
Sound, and infosound, which are com-
mon to all Soundwindows, are invoked
when the user chooses the graphic item
(for example, a button or slider) associ-
ated with the item (see Figure 1). These
methodssupport a
basic interface to
the sounds, allow-
ing the SoundWin-
dow t o load, close,
and retr ieve in-
formation about
sounds, and play
file sounds.

The SoundWin-
dow is a client of
t h e S o u n d v i e w
class, which han-
dles the actual dis-
play and modifica-
t ion of sounds .
(Soundview class-
es are described in
the later section

entitled “Soundview class specifica-
tion.”) Soundwindow methods that
perform a sound-related operation usu-
ally invoke a method in the Soundview
class t o perform the operation and to
display the results. A n advantage of this
division between Soundwindow and
Soundview is that any number of Sound-
Views may be present in a SoundWin-
dow, thus allowing the display of sound
files with any number of tracks.

The specifications we present pro-
vide only an overview of the class spec-
ification. (For instance, in some cases
parameters are missing.) The interest-
ed reader can find a complete listing of
these specifications provided by Reich-
bach.“’

Figure 10 contains the definition of
Soundwindow. Each subclass specifi-
cation overrides the specification for
several methods defined in the figure.
The createItems method is modified t o

class: SoundWindow
superclass: LiteWindow

instance variables/methods:
sndid : Soundwindow identifier
sndview : instance of a Soundview
createItems : method used t o create items

class methods:
new(parent,id) : create an instance of SoundWindow
paint
loadsound : load a sound
closesound : close a sound
infosound

: paint window and contents

: get information about a sound

Figure 10. Specification of Soundwindow.

March 1992 31

class: FileSoundWindow
superclass: SoundWindow

instance variables/methods:
filename : name of sound file
start : default starting point in file
duration : duration of sound
createItems : create items specific to

FileSoundWindow

class methods:
new(parent,id) : create an instance of

loadsound : load Filesound
closeSound : close Filesound
playsound : play Filesound
savesound : save Filesound
undosound

FileSoundWindow

: undo the last operation

Figure 11. Specification of FileSoundWindow.

class: FileSoundView
superclass: Soundview

instance methods:
createMenu : create a FileSoundView menu.

class methods:
loadFileSound(sndid,filename,start,duration)

saveSound(sndid,filename) : save Filesound
playSound(sndid,filename) : play Filesound
undoSound(sndid,fiIename) : undo operation
repeatoperat ion

deleteoperat ion

scaleoperation : change the amplitude
stretchoperation : change the length
zoomOperation : magnify the view
helpoperation : invoke on-line help

: load a file

: repeat a section of

: delete a section of
sound

sound

class: Soundview
superclass: Object

instance variabledmethods:
sndid : sound identifier
height : height of Soundview
width : width of Soundview
leftedit : left edit marker
rightedit : right edit marker
sound
scroll
createMenu

: instance of Sound class
: instance of SoundScroll class
: create menu specific to Soundview

class methods:
new(parent,id) : create an instance of Soundview
paint
closeSound : close Soundview
infosound

: paint window (and contents)

: get info about sound in Soundview

Figure 12. Specification of Soundview.

class: Operationwindow
superclass: LiteWindow

instance variableslmethods:
OP : operation object
opid : operation id
sound1 : source sound
sound2 : destination sound
new?
createItems

: create a new sound
: method to create items in window

class methods:
new(parent,id) : create an instance of

paint

dooperat ion

cancelOp

Operationwindow

contents)

to operate on

variables

: paint operation window (and

: ask user to choose sounds or lines

: cancel an operation and reset

Figure 13. Specification of FileSoundView. Figure 14. Specification of Operationwindow.

create subclass-specific items, such as
text areas, sliders, and buttons. The new
method is modified to create a Sound-
View for each type of sound. The three
subclasses of SoundWindow are File-
SoundWindow, WaveSoundWindow,
and Linewindow. These are used to
access sounds stored on disk, access
sounds represented as waveforms, and
define line segments, respectively.

FileSound Windo w. This subclass pro-
vides access to sounds stored on disk.
Before accessing a sound file, the user

must specify the Mergeoperationwindow

the file name, start-

ration. The File-
S o u n d W i n d o w
overrides the cre-
a te l tems method
to define sound-
file-specific items
for inputting the name of the sound file
and the start and duration times. The
loadsound method is modified to in-
voke the sound-file-specific load meth-

variables defining

ing point, and du-

Figure 15. Specification of the Merge operation.

od. In addition, the savesound, play-
Sound, and undosound methods are
defined. The first one saves a sound file
on the disk, the second plays a sound

COMPUTER

file, and the third undoes an operation.
The current version of Soundworks sup-

merge operation inserts the destination
sound into the source sound. The scale

ports only one level of undo: the last operation modifies the amplitude of the
operation. The object-oriented source sound using the destination (usu-

The FileSoundWindow is defined in approach to the design of ally a line segment). The stretch opera-
Figure 11.

WaveSoundWindow. This subclass
helps access sounds represented as sim-
ple waveforms. There are five types of
waveform sounds: sine, triangle, saw-
tooth, square, and DSP. Wave sounds
require that the frequency, amplitude,
and duration be specified before the
sound is loaded. This class specification
defines the sine, sawtooth, and triangle
wave sounds. The square wave sound
and DSP sound are specified as sepa-
rate subclasses because they require ad-
ditional information. The WaveSound-
Window suppor ts only these basic
waveforms because the underlying im-
plementation of wave sounds is in soft-
ware (which can be slow for long wave
sounds). T o obtain better performance,
we intend to implement more complex
wave sounds using the DSP Soundwin-
dow.

WaveSoundWindow classes are spec-
ified in a manner similar t o the File-
Soundwindow and are not shown here.
The class specification and more details
are provided by Reichbach.’”

Linewindow. This subclass helps de-
fine line segments. It is similar to the
FileSoundWindow and WaveSound-
Window, containing methods and vari-
ables to load, close, and get information
about line segments. Due to space con-
straints, it is not shown here.

the user interface
supported an incremental

development.

and line-segment-related operations.
The local instance method createMenu
is used to define the specific menu for
each subclass. The Soundview class also
creates an instance of class Soundscroll,
which is used to scroll through the sound
displayed in the Soundview. Figure 12
shows the Soundview class definition.

Like Soundwindows, each subclass
of the Soundview class defines the menu
and methods specific to the subclass.
The menu includes both common oper-
ations like zoom and help, and specific
operations for each type of sound. In
addition, each subclass defines a meth-
od to load the correct type of sound (or
line). For example, the FileSoundView
class defines a method to load the file
sound. The IoadFileSound method is
invoked by the loadsound method in
the FileSoundWindow. The Filesound-
View class also defines file-sound-spe-
cific methods for playing the sound. sav-
ing the sound, and undoing the last
operation on the sound. Other subclass-
es define their own menus and methods.
For example, the LineView specifies a
menu that includes common operations,
such as zoom, edit, and help, and specif.

tion, implemented using linear interpo-
lation, is like avariable-speed playback.
using the destination sound as a rate of
change for the source sound. For exam-
ple, if a constant-valued destination
sound (say, a line segment of value 2) is
used t o stretch a source sound, the re-
sult is a sound with double the pitch of
the source sound and half the duration.

Operation windows are based on a
generic class called an OperationWin-
dow, which specifies the format and
usage of the operat ion. Operat ion-
Windows are identified by a unique
variable “opid,” which identifies each
act ive opera t ion . T h e O p e r a t i o n -
Window creates an instance of the Op-
eration object, “op,” which contains
operation-specific methods. The Oper-
a t ionwindow corresponding to each
specific operation is defined as a sub-
class of the class Operationwindow and
invokes a n operation-specific method
in the Operationobject. Figure 14shows
the specification for class Operation-
Window.

Each subclass of Operationwindow
invokes an operation-specific version
of the dooperat ion method. Figure 15
shows the specification for the Merge
operation; other subclasses are speci-
fied in the same manner. The specifica-
tion for the Operation class is presented
in the later section entitled “User inter-
face module.”

ic operations such as drawing line seg-
Soundview class specification. This ments. Protocol specification

specification defines the graphic repre-
sentation and operations on sounds con-
tained in the Soundwindow. Correspond-
ing to the subclasses of Soundwindow,
there are three subclasses for the Sound-
View class: Filesoundview, WaveSound-
View, and Lineview. When a sound or
line window is created, an instance of a
subclass of Soundview is also created
and assigned to the “sndview” variable
for the sound or line window. Then,
whenever the user requests an opera-
tion defined in a window, a method in
the Soundview class is invoked to per-
form the operation. The instance vari-
able “sound” refers to an instance of
class Sound (which is presented in the
later section entitled “User interface
module”) and is used to perform sound-

Figure 13 shows the definition of the
FileSoundView class. The WaveSound-
View and LineView subclasses are de-
fined similarly.

OperationWindow class specifica-
tions. These specifications define win-
dows that can be used to perform oper-
a t ions in which o n e sound o r line
modifies another sound. The operations
accessed through these windows are
merge, mix, scale, and stretch. Each
uses the same command syntax and pa-
rameters and requires the user to spec-
ify the two sounds for the operation and
whether a new sound window should be
created.

The mix operation adds two sounds
together and produces the result. The

The protocol defined between the user
interface code and client application is
partitioned into two modules. The user
interface module defines an interface
for each operation and sound support-
ed by Soundworks. The client applica-
tion module receives requests from the
user interface module, calls the sound
kernel to perform the requests, and re-
turns the results to the user interface.

User interface module. This module
is defined by two classes: Sound and
Operation. The Sound class defines the
message format for each sound-related
request, while the Operation class de-
fines the message format for each oper-
ation. When a method in a Sound object

March 1992 33

class: Sound
superclass: Object

class methods:
new(parent,id)
paint(sndid,height,width) : paint the sound
closeSound(sndid) : close the sound
infoSound(sndid) : get information
saveSound(sndid,filename) : save sound file
playSound(sndid,filename) : play sound file
undosound(sndid,filename) : undo operation
loadFile(sndid,filename,start,duration) : load sound file
loadWave(sndid,type,freq,amp)
loadLine(sndid,points)

: create a sound object

: load a wave sound
: load a line segment

(a)

class: Operation
superclass: Object

class methods:
new(parent,id)
mergeOperation(opid,soundl,sound2,new?) : merge sounddlines
scaleOperation(opid,soundl,sound2,new?) : scale sounds/lines
stretchOperation(opid,soundl,sound2,new?) : stretch soundsllines
mixOperation(opid,soundl,sound2,new?) : mix two soundsllines

: create an operation object

(b)

Figure 16. Specifications of the Sound (a) and Operation (b) classes.

Figure 17. Client
application module.

/* Client Application Module *I
loop

wait for request
decode the request
call sound kernel
I* sound kernel calls routine to return result */

until user is done

sys-message(string)
error-message(cid,string)
setjnfo(cid,size)
return-result(cid,result) : return a result
return-result-string(cid,result,string) : return a result and string
paint-window(cid)
paint-icon(cid)
ps-moveto(x,y)
ps-lineto(x,y)

: display a system message for user
: display a message in a window
: return the size information

: start to draw a sound'in window
: start to draw a sound icon
: move to (and set current position) x,y
: draw a line from current position to

X,Y

Figure 18. Routines provided by the client application module.

or an Operation object is invoked, a
message is sent to the client application
module. After sending this request, the
calling object waits for the result. Fig-
ures 16a and 16b show the specifica-

tions for the Sound and Operat ion
classes.

Client application module. This mod-
ule provides the interface between the

objects in the user interface and the
sound kernel. As with other NEWS-
based applications, the client applica-
tion module is written in C and uses the
libraries provided by NEWS to com-
municate with the user interface code.

As Figure 17 shows, the main func-
tions of the client application module
are to wait for a request from the user
interface module, decode the request,
and perform it by calling the sound
kernel.

The client application module also
provides a set of routines called by the
sound kernel to return the result of each
request. These routines communicate
with the user interface to return result
values (with or without an accompany-
ing text string, like an error message), to
return size information, and to paint
the graphic representation of the sound
(or line). They provide access to the
user interface and are independent of
the application programming environ-
ment. This allows other user interfaces,
using possibly other application pro-
gramming environments, to be inte-
grated with the sound kernel in a
straightforward manner. The integra-
tion effort requires specifying the
above routines, writing the client appli-
cation module loop, and mapping user
interface requests to the sound kernel
interface.

For example, to integrate the sound
kernel with an X Windows-based appli-
cation would require the X client appli-
cation to call the sound kernel routines
(defined in the next section) in response
to user requests. In addition, the X Win-
dows application would have to provide
the client application routines that al-
low the sound kernel to return the re-
sult of the operation to the application.
For example, the routine error-message
would display a message for the user,
while ps-moveto would map into the
equivalent X routine to draw a line.
Figure 18 lists the routines provided by
the client application module for com-
municatingwith the user interface. When
the sound kernel finishes performing a
request for the user, these routines re-
turn the result.

Sound kernel
specification

This kernel manages sounds and lines,
performs operations on sounds, and in-

i -1 COMPUTER

terfaces to the digital hardware. These
furictions implement the methods de-
fined in the Sound and Operation class-
es. I n response to user requests. the
client application module accesses the
functions through the interface described
in the next section. The sound kernel
interface is independent of the client
application module interface that ac-
cesses it. The sound kernel accesses the
routines supplied by the client applica-
tion module to return the result of a
request, report errors, and draw the
graphic representation of a sound or
line.

Figure 19. Sound-
specific routines to
create an internal
sound structure
(a) and operations
to load sounds (b).

file-create(sndid,info) : create a file sound
wave-create(sndid,info) : create a wave sound
line-create(sndid,info) : create a line sound

(a)

load-file(sndid,filename,start,duration)
load-wave(sndid,type,frequency,amplitude,duration,

load-line(sndid,points)
extra)

(b)

Interface to sounds. The sound ker-
nel manages three different types of
sounds: sound files, wave sounds, and
lines. Each sound provides a unique
create routine used to create the sound,
as well as generic sound routines com-
mon to all sounds. Once a sound is cre-
ated. it is accessed in the same manner
regardless of its type.

sound-close(sndid)
sound-info(sndid)
sound-paint(sndid,height,width)
sound-read(sndid,start,duration)
sound-write(sndid,start ,duration)
sound-save(sndid,name)

Figure 20. Generic sound routines.

Sound-specific routines. The routines
shown in Figure 19a create an internal
structure for a sound of the specified
type. The info parameter provides spe-
cific information, such as the sample
rate and sample size. Once created, a
sound is loaded using a load operation
(see Figure 1%) that inserts the re-
ques ted sound into t h e previously
created sound structure. For example,
the load-file operation loads the sound
file specified by f i lename, s tar t ing
time, and duration into the sound struc-
ture. The amount of sound that can be
loaded is limited only by the size of the
address space of the underlying com-
puter.

Generic sourzd routines. These rou-
tines access the sound and are called in
response to user requests. Currently,
Soundworks supports the sound-write
and sound-save routines only for file
sounds. The sound-write routine writes
the specified portions of the sound, while
the sound-save routine saves the entire
sound on the sound file system. Figure
20 shows the routines.

Interface to operations. The sound
kernel provides the routines shown in
Figure 21a for each operation support-
ed by Soundworks. The operations ac-
cess the sounds through the interface
defined in the previous section and re-
turn operation results by using the rou-

close the sound
return information about the sound
paint the sound
read samples from the sound
write samples t o the sound
save the sound

merge-operation(id,soundl ,sound2,newflag) : merge sounds
scale-operation(id,soundl ,sound2,newflag)
stretch~operation(id,soundl,sound2,newflag) : change the duration
mix-operation(id,soundl ,sound2,newflag)

: change the amplitude

: mix two sounds
(a)

delete-operation(id,soundl,left,right)
repeat-operation(id,soundl,left,right)

: delete section of sound
: repeat section of sound

(b)

Figure 21. Routines to perform operations on sounds (a). Delete and repeat op-
erations (b).

tines supplied by the client application
module. The parameter id indicates the
operation window that requested the
operation. The parameters sound1 and
sound2 identify the source and destina-
tion sounds. If the parameter newflag is
set, then a new file sound is created as a
result of the operation.

Filesounds also have the two opera-
tions shown in Figure 21 b to delete and
repeat sections of sound. The left and
right parameters delimit the section of
sound to operate on.

Interface to digital hardware. The
sound kernel is also responsible for in-
terfacing with the digital hardware: the
sound file system, playirecord devices,
and the DSP hardware.

The interface to the sound file system

dependson which system is used. Sound-
Works was designed using the C A R L
(Computer Audio Research Laborato-
ry) sound file system developed for
Unix.' T o access the sound files and to
play or record them. Soundworks re-
lies on the libraries and commands pro-
vided by the system. Commands are
specified either in the user's environ-
ment or in a Soundworks configura-
tion file.

In addition, Soundworks provides
access to the AT&T VMEbus DSP32
signal-processing module." This allows
the user t o integrate digital signal
processing programs into the Sound-
Works environment in a straightfor-
ward manner . l ls ing this interface
requires knowledge of t h e DSP32
module and the interface between the

March 1992 35

DSP programs and internal sound data
structures.

intermediary bitniaps. This reduces the
amount of data processed to generate

Achievements
the required bitmap. Also. to reduce
the network overhead of drawing the
bitmap, it is possible to compress the

An On-line
provides information

amount of data transferred over the
network, thereby increa\ing pcrfor-
niance.

on every sound and
operation. We developed a working implemen-

tation of Soundworks that runs on our
network of Sun workstations. Sound- _ _
Works is also installed at the Music
Department’s Center for Computer
Music Composition, where the sound
kernel is resident on a Digital Equip-
ment Corp. VAX 111750 and a Digital
Sound Corporation digital-analog con-
verter, with a Sun computer serving as
the graphics workstation. A third in-
stallation, in the Electrical and Com-
puter Engineering Department’s Com-
munications Research Lab, is based
completely on Sun workstations and
includes an AT&T VMEbus DSP32
signal-processing module.

We achieved both goals set for the
Soundworks systcm: sound manipula-
tion features and a flexible server-based
system. T h e system provides all of the
sound manipulation and creation fea-
tures presented in the “System over-
view” section except the DSP window.
Integrating the user interface with the
sound kernel demonstrated the viabili-
ty of the server-based architecture

Experience with NEWS. The devel-
opment of Soundworks gave us first-
hand experience in using the NEWS
application programming environment
and the object-oriented version of Post-
Script. The object-oriented approach to
the design and implementation of the
user interface supported an incremen-
tal development of the system. This let
us develop and refine components in a
structured manner.

The support for distributed applica-
tions was particularly useful. The divi-
sion of the user interface and the applica-
tion code made design and development
easier because we could develop each
section independently.

Problems encountered with using
NEWS fall into two categories: difficul-
ties with the object-oriented version of

new product. it had its own set of bugs
and problems.

Experience with Soundworks. Sound-
Works provides a user-friendly inter-
face for manipulating sounds. Because
the graphic interface supports a consis-
tent user interaction regardless of the
type of sound, learning to use Sound-
Works is easy. In addition, the on-line
help facility provides information on
every supported sound and operation.

Some problems did arise from the
lack of accuracy in performing certain
editing operations. In particular. op-
erations that involve a small number of
samples are difficult to perform be-
cause the graphic representations are
not accurate enough. Of course. the user
can zoom a sound to the necessary level
of detail. but this requires extra com-
mands.

There are also minor annoyances in
the user interface code. These are main-
ly in the interface defined for choosing
the sounds and sections of sound when
usingoperation windows. Currently. the
operation window fixes the order o f
sound choice and does not tolerate user
error. A mistake forces the user to re-
start the operation. In addition. when
all parameters have been input and the
operation is started, it is impossible to
halt the operation before completion.
A related issue is the lack of support for
grouping operations together so that
the user can specify common operation
sequences by using a macro language.

I n addition. drawing performance for
large sounds needs to be addressed. For
example. on a Sun-3 it takes approxi-
mately 5 seconds per minute of sound to

he SoundWorks system provides
a good starting point for future
work. Two possible directions

are the integration of new applications
and the distribution of the sound kernel
architecture. For example. i t would be
desirable to have different users, possi-
bly running different applications, ac-
cessing the sound kernel concurrently.
Distributing the sound kernel would
allow users to access audio devices and
sound files residing on other worksta-
tions. An approach we are considering
for accessing the audio devices at an-
other workstation is the integration of
the sound kernel with a Vox server.” We
could also distribute the sound file sys-
tem itself on different machines.

Another promising area for further
research is the adoption of a sound file
system that supports nondestructive
editing to the Soundworks kernel. This
type of editing lets users “modify” sounds
without actually modifying them. For
example. an insertion is accomplished
by adjusting pointers to the sound. not
by changing the sound itself.

I t would also be desirable to port
Soundworks to other architectures. One
candidate is the Next computer. which
has integrated digital audio hardware.
However. because the Next computer’s
window system is not distributed. addi-
tional work would be required to devel-
op a network interface between the user
interface and the sound kernel. H

References

1 C A R L Mucic Manual , Department of
Music. University of California, Sdn D I -
cgo. 1984.

2. A. Freed. “MacMix-Mixing Music with
PostScript and problems with NEWS
itself. PostScript, while very good at
graphics. is not a well-structured pro-
gramming language. For example, all

compute and display the graphic repre-
sentation of the sound. Almost all of the
time required to display a sound is tak-
en up in two tasks: computing the bit-

a Mouse.,3 Proc, Inr31 Conl,,Lrter Mlt,sic
Conf.,ComputerMusicAssoc.. San Fran-
cisco, 1986. pp. 127-129.

parameters are passed on the stack and
there is no explicit checking for the
number of parameters passed or for

map representing the sound and the
actual graphics operations themselves.
One method to reduce the time needed

~ ; ~ ~ ~ ~ ~ ~ ~ ~ : ~ ~ ~ c u ~ ~ r ~ ~ . c ~ ~ l ~ ~ ~ ~
conf, comouter Music A ~ ~ ~ ~ . . s a n

their type. And because NEWS was a for producing bitmaps is t o generate Francisco. 1985. pp. 141-145

.3 h C 0 M P UTE R

4. H . Lieberman. "Machine Tongues IX:
Object-Oriented Programming," Coni-
purer Music J . . Vol. 6. N o . 3, Fall, 1982,
pp. 8-21.

5. G. Loy and C. Abbott . "Programming
Languagcs for Computer Music Synthe-
sis, Performance and Composition." A L'M
Conipirting Sirrvevs. Special Issue on
Computer Music, Vol. 17. No. 2, June
1985, pp. 235.265.

6. NEWS 1. I Usrr's Munirnl. Sun Microsys-
tems, Mountain Vicw. Calif.. 1087.

7. S. Pope. "Building Smalltalk-80 Based
Computer Music Tools." J . Object-Ori-
ented Progrutnmirrg. Vol. 1 . No. I. Apr./
May 1988. pp. 6-10.

8. D . Terry and Daniel Swinehart. "Maiiag-
ing Storcd Voice in the Ethcrphone Sys-
tem," ACM Trans. Computt~r Systeisterns.
Vol. 6 . No. 1 , Feb. 1988. pp. 3-27.

9. B. Arons ct al.. " A Brcadboard Model
for the Vox Server." draft. Olivetti Re-
search, Mcnlo Park. Calif.. June 1988.

I O . J . Rcichbach. .SoirtzdWork.r: A Disrrihiir-
ed Systenifor Mut?ipirIntitig Digital Soi i i i t l .

mastcr's thesis. University of California.
Santa Barbara, 1989.

11. H. Alrutl . "lising the VMEbus DSP32
Signal-Processing Module in a Unix En-
vironment." Tech. Memo 11224-861031.
AT&'T Bell Laboratorics. Murray Hill,
N.J.. 1986.

Jonathan D. Reichbach docs research in dig-
ital audio and object-orientcd systems dc-
sign. which is applied to developing profes-
sional digital audiosystems for the recording.
film. and tclcvision industries. H e continued
to work o n Soundworks while at Sun Micro-
systems. initiating thc integration of a new
sound file system (the MultiMcdia File Sys-
tem). which supports nondcstructive editing
and graphics performance improvements. He
also used his Soundworks experience t o dc-
velop thc Sonic Solutions SoiiicSystcm. which
is used in the recording industry for C D
premastering applications. and film and vid-
e o audio production.

Rcichbach received his RS in computcr
science from the University o f Ncw York at
Stonybrook in 1979 and his MS in computer
scicncc from the Iliiivcrsity of Califorilia at
Santa Rarbai-a i n 1990.

Richard A. Kemmerer is a professor in the
Department of Computer Science a t thc
University of California at Santa Barbara.
He has been a visitor at MIT. Wang Institute.
and Politecnico di Milano. From 1966 t o
1974 he worked as a programmer and sys-
tems consultant for North American Rock-
well and the Institute of Transportation and
Traffic Engineering at UCLA. His research
interests include formal specification and
verification of systems. computer system sc-
curity and reliability. and computer music.

Kemmerer received hi5 BS in mathemat-
ics from Pennsylvania State University in
1966. and his MS and PhD in computer sci-
ence from the University of California at Los
Angeles in 1976 and 1979. Hc is a senior
membcr of the IEEE. a membcr of thc IEEE
Computer Society. a membcr of thc Interna-
tional Association for Cryptologic Rcscarch.
past chair of the IEEE Technical Committee
on Security and Privacy. and a membcr of thc
advisory hoard for ACM's Special lntcrcst
Group on Security. Audit. and Control.

Readers can contact Richard Kemmerer at the University o f California at Santa Barbara.
Computer Scicncc Depai-tnicnt. Santa Barbara. CA 93106.

Computing Tools
TEX by Example
A Beginner's Guide
Arvind Borde

T,X by Example progresses gradually from
elementary typesetting to more complicated
formats and commands and avoids the use of
computerjargon. It features an easy-to-use,
practical format: pages on the right give
examples and explanations of T,X commands,
and pages on the left show the T,X commands
used to produce the examples.
December 1991.16Y pp.. $19.95
ISBN: 0- 12- I I 7650-Y

Theoretical Studies in
Computer Science
Ediredhy
Jeffrey Ullman

Prepared in honor of Seymour Ginsburg, a
pioneer in the development of computer
science, this book contains original technical
and historical papers related to the areas of
computer science in which Ginsburg has
worked.
December 1991,352pp.,$49.95
ISBN: 0- 12-708240-9

An Introduction to
Machine Translation
W. John Hutchins and Harold Somers

tion, providing a full course on both general
machine translation systems characteristics
and the computational linguistic foundations
of the field.

This is the first textbook of machine transla-

April 19Y2.c. 384pp..X3Y.Y5 (tentative)
ISBN. 0-12-362830-X

The Latest Graphics Techniques!

The C Graphics Handbook
Roger T. Stevens

Learn the latest techniques in creating
graphics programs in C and C++. Intended
for all levels of programmers, beginner to
professional, this book includes new algo-
rithms which are faster. Focusing on VGA and
super VGA cards, it shows how to use them to
produce high resolution pictures as well as
describing the hardware that comprises the
display adapter cards from the point of view
of how the hardware imposesvarying
programming constraints.
May !YY2,c, 5OOpp..$39.Y5 (tentative)
ISBN: Ob 12-668370-4

Slide a few tricks
the trade up your
sleeve with these
comolementarv
volumes

of

Graphics Graphics
Gems Gems I1
c d,ted hr edited h!
Andrew S. Glassner James Arvo
1 9 9 0 , 8 3 3 ~ ~ ,$49 95 1 9 9 1 , 6 4 3 ~ ~ ,$49 95
ISBN 0 12-286165-5 ISBN 0-12-064480-0

Order from your local bookseller or directly from

@
ACADEMIC PRESS
Harcoufl Brace Jovanovich, Publishers
Book Marketing Department #16032

1250 Sixth Avenue, San Diego, CA 92101
CALL TOLL FREE

1-800-321 -5068
FAX 1-800.235-0256

Quote this reference number for free posfage
and handling on your prepaid order - 16032

Prices subject to change without notice
1992 by Academic Press Inc All Rights Reserved SUDV -16032

Reader Service Number 4

